Boundary Treatment and Multigrid Preconditioning for Semi-Lagrangian Schemes Applied to Hamilton-Jacobi-Bellman Equations

نویسندگان

  • Christoph Reisinger
  • Julen Rotaetxe Arto
چکیده

We analyse two practical aspects that arise in the numerical solution of HamiltonJacobi-Bellman (HJB) equations by a particular class of monotone approximation schemes known as semi-Lagrangian schemes. These schemes make use of a wide stencil to achieve convergence and result in discretization matrices that are less sparse and less local than those coming from standard finite difference schemes. This leads to computational difficulties not encountered there. In particular, we consider the overstepping of the domain boundary and analyse the accuracy and stability of stencil truncation. This truncation imposes a stricter CFL condition for explicit schemes in the vicinity of boundaries than in the interior, such that implicit schemes become attractive. We then study the use of geometric, algebraic and aggregation-based multigrid preconditioners to solve the resulting discretised systems from implicit time stepping schemes efficiently. Finally, we illustrate the performance of these techniques numerically for benchmark test cases from the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Semi-Lagrangian Methods for the Monge-Ampère Equation on Unstructured Grids

This paper is concerned with developing and analyzing convergent semi-Lagrangian methods for the fully nonlinear elliptic Monge–Ampère equation on general triangular grids. This is done by establishing an equivalent (in the viscosity sense) Hamilton–Jacobi–Bellman formulation of the Monge–Ampère equation. A significant benefit of the reformulation is the removal of the convexity constraint from...

متن کامل

Approximation Schemes for Monotone Systems of Nonlinear Second Order Partial Differential Equations: Convergence Result and Error Estimate

We consider approximation schemes for monotone systems of fully nonlinear second order partial differential equations. We first prove a general convergence result for monotone, consistent and regular schemes. This result is a generalization to the well known framework of Barles-Souganidis, in the case of scalar nonlinear equation. Our second main result provides the convergence rate of approxim...

متن کامل

An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations

We propose a semi-Lagrangian scheme using a spatially adaptive sparse grid to deal with non-linear time-dependent Hamilton-Jacobi Bellman equations. We focus in particular on front propagation models in higher dimensions which are related to control problems. We test the numerical efficiency of the method on several benchmark problems up to space dimension d = 8, and give evidence of convergenc...

متن کامل

Multigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations

We propose multigrid methods for solving the discrete algebraic equations arising from the discretization of the second order Hamilton–Jacobi–Bellman (HJB) and Hamilton– Jacobi–Bellman–Isaacs (HJBI) equations. We propose a damped-relaxation method as a smoother for multigrid. In contrast with the standard policy iteration, the proposed damped-relaxation scheme is convergent for both HJB and HJB...

متن کامل

Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations

We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and HamiltonJacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation method as smoother for multigrid. In contrast with policy iteration, the relaxation scheme is convergent for both HJB and HJBI equations. We show by local Fourier analysis that the damped...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2017